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Effects of strong final-state interactions in the superscaling properties of neutral-current

quasielastic neutrino cross sections are investigated using the Relativistic Impulse Approximation

as guidance. First- and second-kind scaling are analyzed for neutrino beam energies ranging from

1 to 2 GeV for the cases of 12C, 16O and 40Ca. Different detection angles of the outgoing nucleon

are considered in order to sample various nucleon energy regimes. Scaling of the second kind is

shown to be very robust. Validity of first-kind scaling is found to be linked to the kinematics of

the process. Superscaling still prevails even in the presence of very strong final-state interactions,

provided that some kinematical restrains are kept, and the conditions under which superscaling

can be applied to predict neutral-current quasielastic neutrino scattering are determined.
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I. INTRODUCTION

Accurate predictions for neutrino-nucleus cross sections are needed in the analyses of

on-going and future experimental studies of neutrino reactions and neutrino oscillations [1]

at intermediate energies. One option is to rely on direct modeling of the neutrino-nucleus

interaction. To date this is the choice for essentially all neutrino event generators employed

in accelerator and astroparticle neutrino experiments, where the relativistic Fermi gas (RFG)

is usually incorporated as a standard tool. Proceeding in this way, one should keep in mind

that any model for neutrino-induced reactions should first succeed in comparisons with the

available high-quality inclusive electron cross section data, since typically the various semi-

leptonic cross sections are closely related. A large variety of models, including the RFG,

are not successful in reproducing electron scattering data when agreement to better than

20–30% is desired. In order to avoid the nuclear uncertainties inherent in any neutrino-

nucleus reaction description, the authors in [2] have proposed the idea of profiting from the

extensive knowledge on nuclear dynamics acquired from electron scattering experiments in

order to predict inclusive charged-current neutrino-nucleus cross sections. The connection

between the two electroweak processes is done by means of the superscaling analysis. The

successful application of the phenomenological SuperScaling Approach (SuSA) [2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12] has motivated us to revisit the concept of scaling and study its validity

when applied to neutral-current neutrino cross sections.

It is very well established that the large amount of inclusive electron scattering data

manifests scaling behaviour at high momentum transfer for excitation energies falling below

the quasielastic (QE) peak [13, 14, 15, 16, 17]. These (e, e′) data (particularly those coming

from the analysis of the longitudinal response), when appropriately organized, show reason-

ably good scaling of first kind (no dependence on the momentum transfer q) and excellent

scaling of second kind (no dependence on the particular nuclear species). They are said

to superscale. As an outcome of this behaviour, a phenomenological scaling function has

been directly derived from the longitudinal data [14, 16]. This scaling function contains

the relevant information about the initial- and final-state nuclear dynamics explored by the

probe, in this case, an electron. Recently, the scaling analysis has also been extended to

inelastic responses in the region of the delta peak and even beyond [2, 18], and scaling ideas

have also been applied to processes involving hadronic probes [19]. It is important to notice
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that superscaling is a general phenomenon exhibited by Nature (although not perfectly).

Essentially it shows up upon dividing the electron-nucleus cross section data at sufficiently

high q by the corresponding electron-nucleon cross section, and plotting the results against

a properly chosen scaling variable, which can be derived using simple kinematical consider-

ations. Superscaling of data is thus independent of any modeling of the reaction, although

it is a characteristic of the inclusive electron scattering that any “reliable” model should

be able to reproduce. For instance, it is well known that, although the relativistic Fermi

gas exhibits perfect superscaling [20] (it has even inspired a particular scaling variable), the

scaling function it predicts differs from the experimental result. As a matter of fact, only a

few models to date can accurately reproduce the experimental (e, e′) scaling function. One of

these is based on the Relativistic Impulse Approximation when strong relativistic mean-field

potentials are used to describe the bound and ejected nucleon wave functions. This point

will be discussed at length later.

The kinematics involved in (e, e′) and (ν, µ) reactions are rather similar, i.e., in both

cases the scattered lepton is detected, and both the energy and momentum transferred by

the probe to the nucleus are thus known. Accordingly, it is plausible to expect that the two

probes explore the nucleus in a similar way, and consequently both electron and charged-

current neutrino scattering share the same universal scaling function. This is the main

approximation adopted by SuSA, where the scaling function is determined using longitudinal

electron scattering data and then carried forward to make predictions for neutrino-induced

processes [2, 9]. These phenomenological predictions, which incorporate nuclear information

provided directly by the analysis of (e, e′) experimental data, are believed to be more robust

and “reliable” than those coming from direct modeling.

A question arises naturally, namely, can these superscaling ideas be also applied to

neutral-current neutrino-nucleus cross sections? Can we get reliable predictions for neutral-

current processes based on the phenomenological electron superscaling function? These

neutrino processes play an important role in the determination of the strange quark con-

tribution to the nucleon spin. Furthermore, neutral-current reactions are also relevant for

oscillation experiments — for instance, it is expected that they contribute as the third most

important event type for the MiniBooNE experiment at Fermilab [1]. As in the case of

charged-current processes, neutral-current neutrino-nucleus cross section predictions based

on scaling ideas, when possible, are clearly demanded. However, the extension of the scaling
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analysis and the application of SuSA ideas to neutral-current reactions is not as straight-

forward as in the case of charged-current processes. Focusing on the quasielastic region,

in the case of neutral-current (NC) processes the scattered neutrino is not detected and

identification of the NC event may be made by observing a nucleon ejected from the nu-

cleus without finding evidence of final charged leptons. Even measuring the nucleon energy

and momentum, the transferred energy and momentum at the leptonic vertex will remain

unknown. Hence, the kinematics for NC are clearly different from those corresponding to

electron and charged-current neutrino scattering processes. This makes the applicability of

scaling arguments to neutral-current reactions less obvious [11]. Given the basic differences

in the two types of kinematics, it is first necessary to establish the validity or not of scaling

ideas for neutral-current neutrino scattering. Secondly, the phase-space regions explored

in the two processes (neutral-current versus electron and charged-current neutrino scatter-

ing) are different, and they could display distinct sensitivities to the many-body physics

underlying the scaling function. Thus, the idea of using the experimental electron scaling

function to predict neutral-current neutrino cross sections, as was done for charged-current

processes, requires a more in-depth analysis. In other words, prior to any extension of SuSA

analyses to predict neutral-current neutrino scattering in the quasielastic region, one needs

to be sure if superscaling also holds for NC neutrino-nucleus scattering, and moreover, if the

phenomenological (e, e′) scaling function can safely be used to predict NC cross sections, in

spite of the intrinsic differences between the two processes.

In order to proceed, the ideal strategy would be to count on sufficient neutral-current

neutrino-nucleus experimental data to perform a similar scaling analysis to the one used

for the electron case, and compare the NC scaling function (if any) with the electron one.

Unfortunately, neutral-current data are too scarce to allow for a meaningful scaling analysis,

and one has to rely on neutrino-nucleus models that are expected to mimic the behaviour

that data should show.

Keeping this in mind, the natural starting point for examining scaling properties of

neutral-current neutrino scattering is the relativistic Fermi gas. This model is known to ex-

hibit perfect superscaling when applied to inclusive quasielastic electron and charged-current

neutrino scattering. Such a study was recently undertaken for neutral-current neutrino re-

actions in [11], where it was shown how to extend the scaling ideas to NC processes (within

the RFG model), illustrating the results for scattering of 1 GeV neutrinos from 12C. Ad-
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ditionally, the universality property of the scaling function was assumed in [11], and hence

NC neutrino cross sections were predicted by making use of the averaged phenomenological

scaling function extracted from the analysis of (e, e′) data. The same idea of universality

of the scaling function was exploited in [12], where the coherent density fluctuation model

scaling function was used to predict neutral-current neutrino cross sections, and results were

compared with those based on the phenomenological (e, e′) scaling function. A first obstacle

to assessing the likelihood of being able to predict NC cross sections in this way is that the

RFG, although providing a good framework to start with, is surely too simple to describe

satisfactorily the behavior showed by NC data if uncertainties of less than 20–30% are de-

sired. Although the RFG (e, e′) response by definition exhibits perfect superscaling [20], it

lacks important dynamical effects, hence providing responses which are not fully in accord

with the magnitude and shape of the experimental scaling function. Indeed, it has been

shown that strong final-state interactions (FSI) are needed to describe successfully the mag-

nitude and shape of the superscaled data, introducing also small deviations from perfect

superscaling behaviour. It is expected that FSI also modify the neutral-current neutrino-

nucleus cross sections in a significant way, and thus it is necessary to infer how FSI may

affect the scaling properties.

In this work, which is complementary to that in [29], we address this issue: we perform a

systematic analysis of the effects of strong final-state interactions in the superscaling prop-

erties of quasielastic neutral-current neutrino-nucleus scattering within the context of the

Relativistic Impulse Approximation (RIA), based on strong relativistic mean-field (RMF)

potentials for both the bound and the ejected nucleons. Several arguments motivate our

choice of this particular model to illustrate the possible effects of FSI. The RIA model has

been extensively and successfully applied in investigations of exclusive electron scattering

reactions [22]. Furthermore, the RIA approach has been shown to superscale when applied

to quasielastic inclusive electron and charged-current neutrino scattering, giving rise to a

“unique” scaling function, with relatively mild scaling violations. This result reinforces

the idea of the existence of a universal scaling function that is valid for both electron and

charged-current neutrino probes [3, 5]. Finally, the most important reason for the choice

of the RIA, as well as its corresponding semi-relativistic version [6], is that it is capable

of reproducing the shape and magnitude of the experimental scaling curve extracted from

QE (e, e′) data, something that has proven to be elusive for other theoretical models. In
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particular, the asymmetric shape exhibited by the experimental scaling function with a sig-

nificant tail extending to high values of the transfer energy, is accurately reproduced by the

RIA, provided that FSI are described with the relativistic mean field approach [3, 5]. For

all these reasons, and, being aware of the scarcity of neutral-current neutrino data, we are

led to accept the validity of the RIA with final-state interactions treated through the use

of the RMF as a realistic model for the description of inclusive scattering and believe that

it can serve as a reliable tool to illustrate possible FSI effects on the scaling properties of

quasielastic neutral-current neutrino cross sections.

The paper is organized as follows. In Section II we present a brief summary of the

formalism required to treat NC neutrino-nucleus scattering in the RIA. A general discussion

of the superscaling phenomenon is also provided, showing the basic expressions to be used

in the analysis. In Section III we discuss the results. First, we focus on differential cross

sections and response functions for neutrino- and antineutrino-induced proton and neutron

knockout. Several kinematical situations of interest are examined. Second, we evaluate the

scaling function and perform a separate study of the scaling properties — scaling of the

first and second kinds — paying special attention to FSI effects. Results are illustrated for

various choices of kinematics and for three nuclei, 12C, 16O and 40Ca. A comparison between

the RIA-RMF NC and the phenomenological electron scaling functions is also performed.

Finally, in Section IV we summarize our main conclusions.

II. FORMALISM FOR NC NEUTRINO-NUCLEUS SCATTERING

Following the general procedure for superscaling analyses, we start by evaluating inclusive

QE neutral-current neutrino cross sections within the RIA model. We assume the inclusive

cross section to be given as the integrated semi-inclusive one-nucleon (proton or neutron)

knockout cross sections. This approximation, which is implicit in scaling analyses, has been

shown to work successfully in the kinematic region dominated by quasielastic scattering. In

other words, we construct the inclusive A(ν,N)ν ′A−1 cross section, within the RIA model,

by integrating the A(ν, ν ′N)A − 1 cross section over the unobserved scattered neutrino

variables.
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A. Relativistic Impulse Approximation (RIA)

The RIA model has been used to describe neutral-current neutrino-nucleus reactions in

previous work [23, 24]. Here we simply summarize those aspects which are of most relevance

for later discussion of the scaling properties.

The first basic assumption of the RIA is that the process occurs through the exchange

of a single vector boson; this is known as the first Born Approximation. In this approach,

the leading-order exclusive quasielastic cross section is generated by the Feynman amplitude

associated with the diagram shown in Fig. 1. Here, a neutrino scatters off an A-body nucleus

via the exchange of a Z0. In the scattering process, a nucleon is knocked out, leaving behind

an (A-1)-body daughter nucleus, generally in an excited state. The kinematical variables

can be inferred from the figure.

The RIA also assumes the impulse approximation, i.e., the incident neutrino interacts

with only one nucleon which is subsequently emitted. The nuclear current is written as a

sum of single-nucleon currents. Then, the transition matrix elements from which the cross

section is computed can be cast in the following form:

〈Jµ〉 =

∫

dr φF (r)Ĵµ(r)eiq·rφB(r) , (1)

where φB and φF are relativistic bound-state and scattering wave functions, respectively, and

Ĵµ is the relativistic one-body current operator modeling the coupling between the virtual

Z0 and a bound nucleon (see [23, 24] for details concerning the operator and nucleon form

factors; in all results presented in the next section we have not allowed for strangeness content

in the nucleon). We describe the bound nucleon states as self-consistent Dirac-Hartree

solutions, derived within a relativistic mean-field approach using a Lagrangian containing

σ, ω and ρ mesons [25].

Ignoring all distortions due to final-state interactions leads to the description of the

scattering wave function for the outgoing nucleon as a relativistic plane wave. This is

known as the Relativistic Plane-Wave Impulse Approximation (RPWIA) [26, 27], which

obviously entails a simplified description of the reaction mechanism. On the contrary, in

the present work, when accounting for final-state interactions between the ejected nucleon

and the residual nucleus, the outgoing nucleon wave function is computed using the same

relativistic mean field employed to describe the initial bound states. We denote this approach

as RMF [3, 5, 23, 24, 28, 30].
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Using these ingredients, we evaluate the six-differential cross section d6σ/dε′dΩk′dENdΩN .

The inclusive cross section is obtained by integrating over the three momenta of the unde-

tected particles. In neutral-current neutrino scattering the outgoing nucleon is assumed to

be the only particle detected in the final state; hence one integrates over the scattered neu-

trino variables ε′ and Ωk′ . A sum over all single-particle states from which the nucleon may

originate is also performed.

As can be inferred from the way we are proceeding, processes containing other particles in

addition to the nucleon in the final state, including multinucleon knockout and pion produc-

tion, are not explicitly taken into account. Within the context of the RMF (mean-field-based

model) only one-body processes are explicitly considered and the inclusive strength is ex-

clusively built out of impulse approximation single-nucleon knockouts. Note, however, that

the one-body contribution from multinucleon knockout is fully incorporated into the RMF

model, via the self-energy of the propagating nucleon. In other words, the RMF approach

includes all kind of rescattering (elastic and inelastic) with the remaining nucleons. Thus,

in this mean-field picture the redistribution of the strength and multi-nucleon knockout is

completely attributed to final-state interactions and not to explicit correlations, which are

in fact incorporated within the relativistic mean field in an effective way. One must notice

that the relativistic mean field, due to the presence of strong scalar and vector potentials

combining repulsive and attractive interactions that provide the correct saturation proper-

ties for nuclear matter, has more flexibility to incorporate correlations in an effective way

than does the non-relativistic mean-field approach [31].

The adequacy of the potential to be employed for inclusive scattering has been investi-

gated in several works [32, 33, 34, 35]. Besides the relativistic mean field, approaches where

one uses only the real part of the optical potential [28] or where the full optical potential

is employed but a formal summation based on Green function formalism over all possible

channels that contribute to the inclusive scattering is done [32, 34, 35], have been used

to describe lepton-nucleus scattering under inclusive conditions. The comparison of results

from these approaches show that they differ by a few percent and in general they compare

equally well to existing electron scattering data. Thus, in this work we present only results

obtained within the relativistic mean field.
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B. Scaling and superscaling analysis

In the case of electron and charged-current neutrino scattering, the general procedure

to get the scaling function is to divide the inclusive differential cross section by the single-

nucleon eN or νN cross section, weighted by the number of protons and neutrons involved

in the process. If the function obtained in this way, when plotted against a properly chosen

variable (the scaling variable), is seen to depend weakly on the momentum transfer, one

observes scaling of first kind. Additionally, both the scaling function and the scaling variable

can be made dimensionless via a characteristic momentum scale for the chosen nucleus. If

the scaling function so obtained does not depend on the particular nuclear species involved,

one talks about scaling of the second kind. When both types of scaling occur, the data

or the calculations are said to superscale. One should notice the important role played by

the kinematics in the general derivation of scaling for both electron and charged-current

neutrino scattering. Two factors seem to be essential for scaling to occur: i) the transferred

four-momentum Qµ is fixed in the process, and ii) the missing-energy missing-momentum

region accessible to the reaction is relatively confined. This is the situation for the t-channel

processes (electron and charged-current neutrino scattering).

Being aware of the essential differences mentioned in the introduction between the kine-

matics involved in inclusive electron or charged-current neutrino reactions and those for

neutral-current neutrino processes, we start the present study in the Relativistic Impulse

Approximation reviewing briefly the general discussion on the QE neutral-current kinemat-

ics and scaling properties presented in [11]. Summarizing, for neutral-current scattering

we assume the energy ε of the incident neutrino to be specified (in real situations there

are usually no monochromatic beams and an integral over the allowed energies folded with

the neutrino flux must be performed), and also assume the outgoing nucleon energy EN to

be known. Finally, the angle θkpN
between the incident neutrino and the ejected nucleon

momentum is also given. Notice that, in contrast to electron and charged-current neutrino

reactions, the scattered lepton four momentum Qµ = Kµ − K ′µ is not fixed, making the

analysis of the scaling behaviour more difficult. As already presented in [11], one can in-

troduce a corresponding constant Lorentz invariant Q′2 = (Kµ − P µ
N)2 = ω′2 − q′2, where

ω′ = ε−EN and q′ = |q′| = |k − pN | =
√

ε2 + p2

N − 2εpNcosθkpN
.

In [11] the influence of a non-constantQµ in the derivation of scaling in the neutral-current
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case was thoroughly investigated, concluding within the general framework of the relativistic

Fermi gas model that scaling ideas still work properly for neutral-current neutrino-nucleus

processes. In this work we shall not repeat that study, but rather we take it as our starting

point. Our main aim here is to go a step further by analyzing whether or not the presence

of strong final-state interactions affects the scaling properties of QE neutral-current cross

sections. Inspired by the RFG result, in this work we construct the following function

from the inclusive neutral-current neutrino cross section evaluated in the relativistic impulse

approximation,

f(q′, ψu) ≡ kAF (q′, ψu) = kA

[

dσ
dΩN dpN

]

σNC
sn

, (2)

where σNC
sn is the effective neutral-current single-nucleon cross section (given explicitly in

Eq. (20) and the appendix in [11]), and ψu(q′, ω′) is the dimensionless scaling variable ex-

tracted from the RFG analysis to be used for QE neutral-current kinematics (see Eqs. (24)-

(26) in [11]). The momentum kA introduced in Eq. (2) states a characteristic momentum

scale for a given nuclear species, allowing one to define the dimensionless scaling function

f(q′, ψu). This scaling function can be plotted versus ψu for different neutrino beam energies

(which at fixed θkpN
and given EN means different q′ values) and different nuclear species,

thereby yielding a way of analyzing first- and second-kind scaling.

It is important to note that the azimuthal angle φN between the outgoing nucleon and

the scattering plane (which contains both the incident and the scattered neutrinos) will not

cover the full range from 0 to 2π (see discussion in [11]), and hence there will be nonzero

contributions in the inclusive neutral- current cross sections with detection of the outgoing

nucleon (TL, TT, TL’ terms) which would vanish in the usual inclusive charged-current

neutrino and electron scattering reactions.

III. RESULTS

A. Differential cross sections and responses

We begin by evaluating final-state interaction effects on inclusive QE neutral-current

neutrino scattering. We first focus on the case of 12C, whose choice is motivated not only by

the relevance for present neutrino oscillation experiments, but also because it facilitates the
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comparison with the relativistic Fermi gas results presented in [11]. In Fig. 2 we present the

differential cross section dσ/dENdΩN at incident neutrino energy ε = 1 GeV for 12C(ν, p)

and 12C(ν, n) as a function of the outgoing nucleon kinetic energy TN . The two curves in each

panel correspond to different descriptions of the outgoing nucleon wave function: RPWIA

(dashed) and RMF potential (solid). Results are shown for two representative values of the

nucleon scattering angle, 40o (panels (a) and (c)) and 60o (panels (b) and (d)).

Final-state interactions lead to a decrease of the cross sections. Furthermore, RMF results

exhibit an increase of strength at large TN . The existence of this longer tail within the

RMF approach is due to the strong relativistic potentials used in describing the final-state

interaction. This is consistent with what was already observed and discussed within the

context of (e, e′) and charged-current neutrino-nucleus cross sections, where a pronounced

tail extending to small final-state lepton kinetic energies also emerges from the use of the

relativistic mean-field potential [3, 5]. The magnitude of the scalar and vector potentials

in RMF, which are energy-independent, can shift significant strength to higher nucleon

kinetic energies [3, 5]. This effect of the strong RMF potential is the one that provides the

theoretical (e, e′) and (ν, µ) RIA superscaling functions with the correct asymmetry, namely,

the one observed in the experimental data at high energy transfers (positive values of the

scaling variable).

As shown in Fig. 3, final-state interactions have a similar influence on antineutrino proton

and neutron knockout cross sections. Notice that ν cross sections are somewhat smaller,

particularly for the lower values of θkpN
(forward scattering). Second, the long tail displayed

for low TN and observed at θkpN
= 40o is significantly more pronounced in the antineutrino

case. Note that the cross sections even change their behaviour in this region; they increase

significantly as TN approaches zero.

In accordance with what was observed within the context of the RFG in [11], a common

feature of the two models, RPWIA and RMF, is that the differential cross sections present

a similar shape for both proton and neutron emission, although with somewhat different

magnitude. Neutron ejection involves larger cross sections, as one expects from the isovector

dependence of the coupling to the Z0 [11].

The separate response functions contributing to the RPWIA cross sections in Figs. 2 and

3 are displayed in Fig. 4. These RPWIA responses are very similar to those presented for

the relativistic Fermi gas model in [11] at θkpN
= 60o (see Fig. 6 in the earlier reference).

12



This result is indeed consistent with the minor role of nuclear modeling expected at energies

of the order of 1 GeV and higher [28]. Thus, most of the features concerning the responses

at 60o signaled in [11] apply also to our present results within the relativistic impulse ap-

proximation: the purely transverse T and T ′ responses yield the dominant contributions. In

the case of neutron emission, the purely longitudinal L response produces also a significant

contribution, particularly for small values of the nucleon kinetic energy. The TL interference

response also contributes to the shape and magnitude of the cross sections. This applies not

only to the 60o results, but also to the 40o ones. Finally, the TT and TL′ response functions

have an almost negligible effect on the cross section for all cases.

Although not shown for brevity, the RMF responses have similar trends to those for the

RPWIA case, but with reduced magnitudes. In particular, responses evaluated with the

RMF potential vanish at higher TN , in accordance with the behaviour of the cross sections

shown in Fig. 2.

Let us now turn to the main goal of this section, namely the behaviour of the QE neutral-

current neutrino cross sections with respect to changes in the kinematics. This is crucial for

understanding the outcomes of the scaling analysis discussed in next section. The results in

Fig. 5 correspond to 12C(ν, p) differential cross sections within RMF for three neutrino beam

energies, 1, 1.5 and 2 GeV (panels (a), (b) and (c), respectively). For each energy, we study

the variation of the cross sections with the nucleon scattering angle. Several observations

can be made based on the figure:

• For a given neutrino energy, θkpN
determines the value of the nucleon kinetic energy

for which the cross section presents its maximum. In general, small angles correspond

to cross sections peaked at higher values of kinetic energy. Hence, changing the value

of θkpN
allows us to explore different regions of nucleon kinetic energy.

• For a given θkpN
, changing the neutrino beam energy means changing the position and

magnitude of the maximum of the cross section. This change is significantly stronger

at more forward angles.

The evolution of the QE neutral-current 12C(ν, p) cross section can be easily understood

from the consideration of the corresponding cross section from free nucleons at rest. In

such a case, energy and momentum conservation imposes a relationship between the values

of θkpN
, the angle of the nucleon with respect to the incident neutrino beam, and TN , the
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energy of the final nucleon. This relation is given in the form,

TN =
2MNε

2 cos2 θkpN

(ε+MN)2 − ε2 cos2 θkpN

. (3)

Results from Eq. (3) for several values of the incoming neutrino energy, ε, are shown in

Fig. 6. For bound nucleons, apart from the effect of Fermi motion inside the nuclei that

broadens the peak and shifts it a bit with regard to the free-nucleon case, we expect the

maxima of the cross sections to be located approximately where Eq. (3) predicts (see Fig. 6).

This explains in a simple way the observations about the QE neutral-current 12C(ν, p) cross

section specified above. These results are thus directly linked to the kinematics of the

process, and not to the use of the RIA-RMF model. In particular, the fact that the range

of TN spanned at fixed θkpN
for varying beam energy is reduced for large angles as seen in

Figs. 5 and 6 will have important implications in the first-kind scaling properties of the cross

sections.

B. Scaling analysis

In this section we present a general study of the scaling properties of the QE neutral-

current neutrino cross sections with strong final-state interactions. Our aim is twofold. First,

we investigate whether FSI effects may prevent (or not) the appearance of superscaling.

Second, if superscaling holds even in this case, we study the conditions under which the

SuSA approach (based on the experimental superscaling (e, e′) response) can be used to

predict neutral-current neutrino-nucleus cross sections. As stated in the introduction, we

use the RIA-RMF model to illustrate the results, although our findings are not intrinsically

linked to the use of this model, as will be clarified later.

To begin let us focus on the first-kind scaling analysis of the (ν, p) cross sections. In the

top panels of Fig. 7 we present 12C(ν, p) quasielastic differential cross sections for different

nucleon detection angles and beam energies. Each graph corresponds to a certain θkpN
, from

20o to 80o, and for each θkpN
value results for three neutrino beam energies, 1, 1.5, and 2

GeV, are displayed. The characteristic momentum for 12C is taken to be kA = 228 MeV/c as

suggested by the superscaling analysis of electron scattering in [16]. As already observed in

Fig. 5 and explained from the simple consideration of free nucleons in the previous section,

the variation of the cross sections is softer for angles equal to or larger than 60o. For 40o and
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smaller there is a noticeable shift of the cross sections to higher nucleon kinetic energies, as

well as a considerable variation in magnitude when the beam energy increases. If first-kind

scaling holds, all of these cross sections should collapse to a unique curve when dividing

by the neutral-current single-nucleon cross section (see Eq. (2)) and plotting the results

against the dimensionless scaling variable ψu. These results are shown in the bottom panels

of Fig. 7. Focusing on larger angles, namely 60o and 80o, it is observed that scaling of

first-kind is fulfilled to a high degree even in the presence of the very strong FSI included

in the RIA-RMF model. In other words, the variations in the cross sections observed for

different neutrino energies are well accounted for by the single-nucleon part of the cross

sections, which has been factored-out in obtaining the scaling function. In contrast, for

forward angles, 20o and 40o, first-kind scaling is clearly not so well respected. Nevertheless,

there are some features of first-kind scaling behaviour that still persist for these forward

angles: the peak of the scaling function appears approximately at the same ψu value for all

beam energies, and in the region of negative ψu-values first-kind scaling is reasonably well

respected. However, the scaling functions obtained at 20o and 40o show an increase in the

height of the peaks of the curves, as well as a shift to ψu > 0 for increasing beam energy.

This is similar to what is observed in RIA-RMF for the inclusive (e, e′) case. Actually, the

experimental (e, e′) data do leave room for some breaking of first-kind scaling in the region

of positive scaling variable.

A comment is in order concerning the behaviour of the scaling function f(ψu) for positive

ψu values. As noted, in this ψu-region f(ψu) may be two-valued. This purely kinematical

effect comes from the general expression for the ψu variable and the kinematics involved in

neutral-current neutrino-nucleus scattering processes. This effect is present for all models

whenever the kinematics lead to positive ψu-values close to or higher than 0.5 (most forward

scattering angles). In order to clarify this point we present in Fig. 8 the behavior of the

scaling variable ψu at a beam energy of 1 GeV as a function of the outgoing nucleon kinetic

energy for four different values of the scattering angle, θkpN
= 20o, 40o, 60o and 80o. As

shown, ψu takes on a unique value for each TN for θkpN
= 60o and 80o. For lower scattering

angles, there exists a region (wider for smaller θkpN
) where two different values of the nucleon

kinetic energy lead to the same ψu. Figure 8 also illustrates why the superscaling functions

in Fig. 7 extend up to a different positive ψu-value depending on the nucleon scattering

angle. As a matter of fact, this ψu-value, that corresponds to the minimum kinetic energy
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considered, is lower for increasing angles.

Up to now we have found that at forward scattering angles the results display first-kind

scaling violation to some extent, while at larger angles exhibit almost perfect first-kind

scaling. The origin of this scaling behaviour of the QE neutral-current (ν, p) cross sections is

easily understood when one realizes that first-kind scaling is very well fulfilled in the absence

of final-state interactions, as was also the case for electrons and charged-current neutrino

reactions [3, 5, 11, 20]. In Fig. 9 we present results analogous to those in Fig. 7, but now

for the RPWIA. In contrast to what happens when FSI are accounted for, first-kind scaling

is now well fulfilled independently of the value of θkpN
. Therefore, the breakdown of first-

kind scaling for forward angles in Fig. 7 must be ascribed to final-state interactions. This

may appear to be a little unusual when one examines the cross sections in the top panels

in Fig. 9, and makes a “rough” comparison with the corresponding ones in Fig. 7. The

variation with beam energy and nucleon scattering angle is very similar in the two cases,

and from this alone it is not clear why the situations with and without FSI differ. In order

to understand clearly why and when FSI cause scaling violations, let us consider the scaling

procedure in two steps: i) dividing the cross sections by the corresponding single-nucleon

cross section (see Eq. (2)), and ii) representing the so-obtained results against the scaling

variable. Figure 10 illustrates these two steps for the cases of 20o (panels (a), (b) and (c))

and 60o (panels (d), (e) and (f)) in the RPWIA. Let us focus first on the top panels, where

we show the differential cross sections for 12C(ν, p) as a function of the outgoing nucleon

kinetic energy for two values of neutrino beam energy. The differences between 20o and 60o

cross sections are clearly visible. As already mentioned and explained using the free-nucleon

case in previous section, the cross sections at 20o are subject to a much stronger shift to

higher TN values with increasing beam energy than at 60o. Also the magnitude of the cross

sections at different beam energies changes more drastically for 20o than for 60o. If we

divide these differential cross sections by the corresponding single-nucleon ones in order to

get the scaling function, but still plot the results against TN , we obtain what is shown in the

middle panels of Fig. 10. We observe that this simple step already removes the differences

in magnitude for the different beam energies, not only for 60o, but also for 20o. If we now

represent these results as a function of the scaling variable, the shift observed when changing

the beam energy disappears, and scaling of the first kind shows up. Both steps, i) and ii),

must be carried out in order to bring together the cross sections for different beam energies.
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We see how in RPWIA the dependence of the neutral-current QE neutrino cross section on

the energy of the outgoing nucleon is well described by its single-nucleon content, and it is

consequently cancelled out during the scaling analysis.

In what follows we analyze the situation when final-state interactions are included. Fig-

ure 11 shows how FSI modify the 12C(ν, p) cross sections at 20o and 60o for different beam

energies. These two angles are representative of the regimes where first-kind scaling is bro-

ken (forward angles) or fulfilled (large angles), respectively. One observes that FSI involve

a redistribution of strength that depends on the energy of the final nucleon. Values of TN

far from each other are affected very differently by FSI. In the case of 20o this effect is

clearly stronger, as the cross sections for the various beam energies span a broader region

of nucleon kinetic energies. This extra TN -dependence due to final-state interactions is not

contained in the single-nucleon cross section, and thus the scaling procedure is not enough

to compensate for it if the cross sections peak at very different TN values. This is clearly

appreciated if we follow steps i) and ii) as we have done previously in RPWIA. Results

are shown in Fig. 12. As in RPWIA, a large amount of the variation in magnitude of the

cross sections at different beam energies is also removed when the single-nucleon content is

factored out, although clear differences still persist in this case for 20o. Moreover, at 20o

one observes the additional TN -dependence of the cross section with respect to the plane-

wave results (extended tails), and it consequently shows up even when plotting the results

against ψu. For 60o the behaviour of results differs because FSI effects are similar for the

different beam energies, given the fact that the cross sections peak at similar TN values. In

this case, we can say that FSI effects do not spoil scaling. In general, if the kinematics of

the process are such that the range of energies of the ejected nucleon depends strongly on

the beam energy, the nucleon may be subject to very different final-state interactions for

each ε, and a visible breakdown of first-kind scaling will show up. This is what happens

in general for forward angles, where there is a strong shift of the position of the peak of

the cross section with incoming beam energy. However, for those kinematics for which the

range of TN remains approximately the same when considering different beam energies, i.e,

for larger θkpN
(see Fig. 6), first-kind scaling emerges even with final-state interactions in-

cluded, as FSI effects on the knockout nucleon are similar for different beam energies. This

outcome, namely, almost perfect first-kind scaling for large angles and violations in the case

of forward ones, is based on pure kinematical reasoning, and to this extent (and within the
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impulse approximation) it is independent of the specifics of the model employed. It appears

for any model in which final-state interactions are strongly TN -dependent, as is the case of

the relativistic mean-field description. One has to realize that the use of the RMF potential

provides a stringent scenario for first-kind scaling in the case of QE neutral-current neutrino

reactions. If future QE neutral-current neutrino data suggest weaker final-state interactions,

that are less dependent on TN than the ones predicted by the relativistic-mean field, our

results imply that in such a case first-kind scaling would work better for smaller angles than

shown here, even without any restriction on θkpN
.

Concerning the bivalued nature of the scaling function f(ψu), Fig. 9 shows that in the

absence of FSI superscaling is a good approximation and the two values of the scaling

function for the same ψu value are nearly equal. When FSI are present (Fig. 7), and,

if the kinematics prevent superscaling, the bivalued nature of the superscaled function is

significantly revealed.

It is very relevant that for the differential cross section integrated over angles, namely

dσ/dTN , the larger contributions come from angles for which scaling works nicely even in

the presence of very strong final-state interactions. This is clearly shown from the compar-

ison between dσ/dTN in Fig. 13 and the contributing dσ/dTNdΩN cross sections in Fig. 5.

The situation is more favourable for higher beam energies, as in this case the contribution

coming from forward angles moves to higher values of TN , where the cross section has al-

ready decreased considerably. Additionally, note that the contribution of forward angles is

suppressed in the integration by the phase-space factor sin θkpN
.

Results of a study of scaling of the second kind are presented in Fig. 14. The scaling

function f(q′, ψu) is evaluated at ε = 1 GeV for three different targets, 12C as in previous

figures, together with 16O and 40Ca with kA = 216 and 241 MeV/c, respectively. These

values for the characteristic momentum scale of 16O and 40Ca provide the best superscaling

of the data in the case of electron scattering [16]. As in the investigation of first-kind scaling,

the values θkpN
= 20o, 40o, 60o and 80o are considered. The superscaling functions obtained

for several nuclei are almost identical (bottom panels), in spite of the strong difference in

magnitude of the corresponding cross sections (top panels). That is, the dependence on the

nuclear species is well accounted for by the superscaling analysis. Scaling of second kind is

seen to be very robust, thereby opening up a means of taking into account nuclear effects

for different nuclei by employing superscaling ideas.
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To sum up, superscaling for QE neutral-current neutrino reactions is fulfilled at the level

of ∼10% when very strong final-state interactions are accounted for, provided the angle at

which the nucleon is scattered is larger than 50-60 degrees. This ∼10% criterion corresponds

to the maximum difference between the peaks of the scaling functions when dealing with

the different neutrino energies, target nuclei and angles considered in this work.

The above analysis has been focused on (ν, p) reactions. Although not shown here in

detail for the sake of brevity, a similar study has been performed for (ν, n), (ν, p) and (ν, n)

cross sections, reaching similar conclusions. In spite of the large differences of magnitude

and/or behaviour observed for cross sections for neutrinos or antineutrinos, and for proton

or neutron knockout, the four processes converge to roughly the same superscaling function,

with some limitations that are commented upon next. In particular, superscaling functions

obtained for protons and neutrons are almost identical in all cases considered in the present

work. This is illustrated in panels (c) and (d) of Fig. 15 when considering scattering from

12C at 1 GeV for two values of θkpN
, 60 and 40 degrees, that are representative of the

kinematical regimes for which first-kind scaling works well (large angles) or is moderately

violated (more forward ones). The agreement between superscaling functions obtained for

neutrinos and antineutrinos is somewhat worse, as clearly shown in panels (a) and (b) of

Fig. 15. In the case of 60o there are differences mainly in the region close to the peak of

the scaling functions, but overall the two curves are rather similar. However, neutrino and

antineutrino scaling functions show important deviations for forward angles, for which the

first-kind scaling is not well fulfilled. Once more, the reason for this is clearly linked to

final-state interactions. We have checked that the ν-ν comparison improves considerably in

the plane-wave limit.

The exhibition of superscaling by neutral-current quasielastic neutrino-nucleus scattering

even in the presence of very strong final-state interactions opens the door for investigations

of the validity of the universal character of the scaling function for inclusive electroweak

processes on nuclei, using either electrons or charged- and neutral-current neutrino probes.

To the extent that this universality holds and consequently all of these processes can be

described by means of a unique scaling function, the phenomenological SuSA approach

formerly applied to predict charged-current neutrino-nucleus cross sections could also provide

reliable, largely model-independent, predictions for neutral-current processes.

In order to study whether or not this universality assumption also holds for neutral-
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current processes, in Fig. 16 we compare the RIA-RMF NC superscaling function with

the averaged experimental function obtained from the analysis of quasielastic (e, e′) data,

together with a phenomenological parameterization [2, 14, 16]. The RIA-RMF superscaling

function has been plotted for two values of θkpN
for which scaling of first-kind is (a) well

fulfilled (60o) or (b) not-so-well (40o). Results are shown for two beam energies for each angle.

As observed, the model gives rise to a neutral-current scaling function that follows closely the

behaviour of the (e, e′) function whenever superscaling is well respected (60o). In such a case,

it is also noticed that the bivalued behaviour of the superscaling function is hardly visible. In

contrast, the departure from the SuSA (e, e′) response is visible for the case of 40o, for which

breakdown of first-kind scaling clearly occurs, and the bivalued nature of the neutral-current

superscaled function is enhanced. We notice that all curves would coincide if superscaling

were exactly fulfilled in both neutral-current and (e, e′) cases. Since the (e, e′) and NC

scaling curves are obtained under rather different kinematical situations, the scaling curves

depart from one another when superscaling is not a good approximation. This supports

the assumption that, under proper kinematical restrictions, a universal quasielastic scaling

function exists which is valid, not only for inclusive electron and charged-current neutrino

reactions as seen in [3, 5], but also for neutral-current processes, making feasible the idea

of using the SuperScaling Approach also to predict neutral-current neutrino-nucleus cross

sections.

IV. CONCLUSIONS

In this paper we have studied the possibility of applying superscaling ideas to neutral-

current neutrino scattering processes, of interest for experiments that rely on the measure-

ment of neutrino-nucleus cross sections. This is an extension of the work presented in [29].

The shortage of neutral-current experimental data to date has made mandatory the use of a

specific model for this purpose. We have chosen the RIA-RMF approach mainly because of

its capability to reproduce the superscaling properties exhibited by inclusive electron data,

including the asymmetric tail occurring in the experimental scaling function that has proven

to be elusive for most models. Furthermore, RIA-RMF gives rise to scaling violations that

are similar to those presented by the electron scattering data. The essential ingredient of the

RIA-RMF model that makes this agreement possible is the inclusion of strong final-state
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interactions between the emitted nucleon and the residual nucleus by means of the same

relativistic mean-field potential already used for describing the initial bound nucleon states.

We have only relied on the RIA-RMF model to illustrate possible FSI effects in the super-

scaling properties of quasielastic neutral-current neutrino cross sections. Our goal was not

to explore how this particular model (super-) scales or not, but rather whether and when

the experimental scaling response obtained from electron scattering data can be applied to

predict neutral-current neutrino-nucleus cross sections, for which we consider the RIA-RMF

model as guidance.

Within the context of the RIA-RMF, we have evaluated inclusive differential cross sec-

tions (and separate response functions) for various choices of kinematics and nuclei. The

superscaling function has been computed and displayed as a function of the scaling variable

ψu for the different kinematics and various target nuclei. Proceeding in this way, we have

investigated scaling of first and second kinds. From our RIA-RMF results, scaling of the

second kind is seen to work extremely well, opening the possibility of accounting for nuclear

effects for different nuclei employing superscaling ideas. With respect to scaling of first kind,

there are kinematics for which scaling is very good and others for which clear scaling viola-

tions are observed. We have identified what are the conditions that make a specific choice of

kinematics suitable or not for good first-kind scaling: the kinematics must be such that the

range of energies spanned by the ejected nucleon depends weakly on the incoming neutrino

energy. If the beam energy is given and the angle of the ejected nucleon with respect to

the beam is fixed, the above situation means angles larger than roughly 50 degrees, which

happens to be the region where the cross section integrated over angles reaches larger values.

In such cases, first-kind scaling is well respected even in the presence of strong final-state

interactions.

We have compared the RIA-RMF superscaling function with the experimental (e, e′)

scaling function and have verified that the agreement is good for those kinematics for which

first-kind scaling is well fulfilled. This accordance clearly favours the existence of a universal

scaling function which is valid for electron and neutrino (charged- or neutral-current) inclu-

sive scattering, and it gives us confidence that, under the kinematical restrictions explained

above that ensure good first-kind scaling, the SupersScaling Approach can be extended to

predict neutral-current quasielastic neutrino cross sections. We also note that, even though

we have illustrated this study within the RIA-RMF model, the kinematical conditions that
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FIG. 1: Feynman diagram for quasielastic NC neutrino-nucleus scattering in the first Born approx-

imation

grant the validity of SuSA are model independent provided the impulse approximation can

be safely applied, that is, under quasielastic kinematics with neutrino beam energies from

∼500 MeV up to a few GeV. Obviously, there also exist some uncertainties in the assump-

tion of the validity of the (super)scaling hypothesis for neutral currents, mostly due to the

fact that meson exchange currents have not been considered. Meson-exchange current ef-

fects do not scale (see [36, 37]), but they are expected to contribute less than 15% (see for

instance [38, 39]) to these inclusive neutrino-nucleus cross sections at intermediate energies.
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FIG. 2: (Color online) QE differential cross sections for NC neutrino scattering at 1 GeV from

12C for proton (panels (a) and (b)) and neutron (panels (c) and (d)) knockout. Panels (a) and (c)

correspond to θkpN
= 40o and panels (b) and (d) to 60o. Results are given for the RPWIA and the

RMF-FSI description.
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FIG. 10: (Color online) Illustration of the scaling procedure for θkpN
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FIG. 12: (Color online) As in Fig. 10, but now for RMF.
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FIG. 14: (Color online) Differential cross section for (ν, p) scattering in RIA-RMF at 1 GeV for

different target nuclei (panels (a), (b), (c) and (d)) and their corresponding scaling functions (panels
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